Precisely how multicellular organisms evolved from single-celled ancestors remains poorly understood. The transition happened hundreds of millions of years ago, and early multicellular species are largely lost to extinction. To investigate how multicellular life evolves from scratch, researchers from the Georgia Institute of Technology decided to take evolution into their own hands. Led by William Ratcliff, associate professor in the School of Biological Sciences and director of the Interdisciplinary Graduate Program in Quantitative Biosciences, a team of researchers has initiated the first long-term evolution experiment aimed at evolving new kinds of multicellular organisms from single-celled ancestors in the lab. In this case, the cells are snowflake yeast, and they grew so large they could be seen with the naked eye. Other researchers include Ozan Bozdag, research scientist, School of Biological Sciences; Seyed Alireza Zamani Dahaj, computational biologist, Interdisciplinary Graduate Program in Quantitative Biosciences, and the School of Physics; Thomas C. Day, Ph.D. candidate, School of Physics, and Peter Yunker, associate professor, School of Physics. Anthony J. Burnetti, research scientist; Penelope Kahn, research technician; Dung T. Lac, research technician; Kai Tong, postdoctoral scholar; and Peter Conlin, postdoctoral scholar, are all from the School of Biological Sciences. (This story was also covered at ScienceAlert, NPR, Interesting Engineering, New Atlas, Newswise, and Tech Explorist. Read more about the research here.)
Article URL
Publication
The New York Times